Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chemistry ; 29(23): e202203739, 2023 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-36734188

RESUMO

Urokinase-type plasminogen activator receptor (uPAR) is a glycolipid-anchored protein located on the cell surface that is implicated in the promotion of metastasis. New fluorescent probes for the detection of uPAR expression that feature a rapid "turn-on" response are reported here. They consist of a donor-π-acceptor-based fluorophore conjugated with a uPAR-binding AE105 peptide. The resulting AE105-coupled uPAR-targeting probes are weakly emissive in aqueous buffer solutions; however, a fluorescence "turn-on" signal is instantly triggered upon specific binding to uPAR (KD =63.2 nM for P1 and 49.5 nM for P2), which restricts the rotational deactivation of the fluorophore. Applications of the probes were demonstrated in the imaging of uPAR overexpressed on the membrane of cancer cell and in a cell-based uPAR inhibitor assay.


Assuntos
Corantes Fluorescentes , Receptores de Ativador de Plasminogênio Tipo Uroquinase , Receptores de Ativador de Plasminogênio Tipo Uroquinase/metabolismo , Membrana Celular/metabolismo
2.
Nucleic Acids Res ; 50(15): 8929-8946, 2022 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-35920317

RESUMO

Although both the p53 and forkhead box (FOX) family proteins are key transcription factors associated with cancer progression, their direct relationship is unknown. Here, we found that FOX family proteins bind to the non-canonical homotypic cluster of the p53 promoter region (TP53). Analysis of crystal structures of FOX proteins (FOXL2 and FOXA1) bound to the p53 homotypic cluster indicated that they interact with a 2:1 stoichiometry accommodated by FOX-induced DNA allostery. In particular, FOX proteins exhibited distinct dimerization patterns in recognition of the same p53-DNA; dimer formation of FOXA1 involved protein-protein interaction, but FOXL2 did not. Biochemical and biological functional analyses confirmed the cooperative binding of FOX proteins to the TP53 promoter for the transcriptional activation of TP53. In addition, up-regulation of TP53 was necessary for FOX proteins to exhibit anti-proliferative activity in cancer cells. These analyses reveal the presence of a discrete characteristic within FOX family proteins in which FOX proteins regulate the transcription activity of the p53 tumor suppressor via cooperative binding to the TP53 promoter in alternative dimer configurations.


Assuntos
Proteína Forkhead Box L2/metabolismo , Fatores de Transcrição Forkhead , Fator 3-alfa Nuclear de Hepatócito/metabolismo , Proteína Supressora de Tumor p53/genética , Fatores de Transcrição Forkhead/metabolismo , Humanos , Regiões Promotoras Genéticas , Proteína Supressora de Tumor p53/metabolismo
3.
FASEB J ; 36(2): e22127, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35066937

RESUMO

Lung cancer has the highest incidence and mortality rates among all types of cancer worldwide, and 80%-85% of patients with lung cancer are diagnosed with non-small cell lung cancer (NSCLC), which has 5-year survival rate of only 5% at advanced stages. Development of new therapeutic agents and strategies is required to enhance the treatment efficiency in patients with NSCLC. Metabolic alterations and anticancer effects of plant hormones and their derivatives have not been investigated in NSCLC in vitro and in vivo. The present study investigated the cytotoxic effects of 11 plant hormones and their derivatives against NSCLC cell lines; ortho-topolin riboside (oTR) showed the highest cytotoxicity among all tested compounds against NSCLC cells. Alteration of metabolites and lipids was investigated using gas chromatography-mass spectrometry and nano electrospray ionization-mass spectrometry in oTR-treated NSCLC cells and a xenograft mouse model. oTR reduced amino acid and pyrimidine synthesis in NSCLC cells and xenograft tumors. Moreover, oTR reduced glycolytic function and decreased mitochondrial respiration function by inhibiting glutamine and fatty acid oxidation. Increased levels of phosphatidylcholine, phosphatidylethanolamine, and phosphatidylserine species suggested that oTR might act as a fatty acid oxidation inhibitor. In addition, the increased level of phosphatidylserine species implied that phosphatidylserine-mediated apoptosis occurred in oTR-treated NSCLC cells and xenograft tumor. The antiproliferative and apoptotic effects of oTR were mediated by the reduced p-ERK and p-AKT levels and increased cleaved Caspase-3 levels, respectively. This is the first study to investigate the metabolic alterations and anticancer activity of oTR in in vitro and in vivo models of NSCLC. Our results provide basis for the development of oTR-based therapeutic agent for patients with NSCLC.


Assuntos
Antineoplásicos/metabolismo , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Citocininas/metabolismo , Neoplasias Pulmonares/metabolismo , Metaboloma/fisiologia , Células A549 , Animais , Apoptose/fisiologia , Caspase 3/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/fisiologia , Feminino , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Mitocôndrias/metabolismo
4.
Biochem Biophys Res Commun ; 583: 192-198, 2021 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-34749236

RESUMO

Bisphenol A (BPA) is a well-known endocrine-disrupting chemical that interferes with normal steroid hormone production in various species. However, the underlying mechanism of the effect of BPA on steroid production in the human ovary is not well understood. In the present study, we found that BPA, at very low concentrations (10-11 to 10-8 M), significantly increased the expression of FOXL2, a transcriptional factor essential for proper ovarian development and function, in a human ovarian granulosa cell-derived cell line (KGN). Furthermore, BPA enhanced CYP19A1 (aromatase) expression levels and estradiol (E2) production, but these effects were not observed in FOXL2 knockout (KO) cells. In addition, we found that BPA upregulates ß-catenin (CTNNB1) and stimulates nuclear translocation of CTNNB1, leading to transcriptional activation of FOXL2 mRNA. Furthermore, BPA failed to induce CYP19A1 and E2 production in CTNNB1-silenced KGN cells. Thus, we reveal a comprehensive molecular signaling cascade encompassing BPA-CTNNB1-FOXL2-CYP19A1-E2 that contributes to the endocrine-disrupting activities of BPA in human ovarian granulosa cells.

5.
Cancers (Basel) ; 13(16)2021 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-34439333

RESUMO

SQCC is a major type of NSCLC, which is a major cause of cancer-related deaths, and there were no reports regarding the prediction of metastatic potential of lung SQCC by metabolomic and lipidomic profiling. In this study, metabolomic and lipidomic profiling of lung SQCC were performed to predict its metastatic potential and to suggest potential therapeutic targets for the inhibition of lung SQCC metastasis. Human bronchial epithelial cells and four lung SQCC cell lines with different metastatic potentials were analyzed using gas chromatography-mass spectrometry and direct infusion-mass spectrometry. Based on the obtained metabolic and lipidomic profiles, we constructed models to predict the metastatic potential of lung SQCC; glycerol, putrescine, ß-alanine, hypoxanthine, inosine, myo-inositol, phosphatidylinositol (PI) 18:1/18:1, and PI 18:1/20:4 were suggested as characteristic metabolites and intact lipid species associated with lung SQCC metastatic potential. In this study, we established predictive models for the metastatic potential of lung SQCC; furthermore, we identified metabolites and intact lipid species relevant to lung SQCC metastatic potential that may serve as potential therapeutic targets for the inhibition of lung SQCC metastasis.

8.
Oncogenesis ; 10(7): 54, 2021 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-34294680

RESUMO

Interferon-inducible guanylate-binding proteins (GBPs) are well-known for mediating host-defense mechanisms against cellular pathogens. Emerging evidence suggests that GBPs are also implicated in tumorigenesis; however, their underlying molecular mechanism is still unknown. In this study, we identified that GBP1 and GBP2 interact with MCL-1, the key prosurvival member of the BCL-2 family, via its BH3 domain. GBPs induce caspase-dependent apoptosis in chronic myeloid leukemia (CML) and acute myeloid leukemia (AML) cells, where the proapoptotic BCL-2 member, BAK, is an indispensable mediator. In particular, GBP2 completely inhibited the MCL-1-mediated promotion of the survival of CML cells through competitive inhibition, resulting in BAK liberation from MCL-1. Concurrently, GBP2 dramatically upregulates BAK expression via its inhibition of the PI3K/AKT pathway. Moreover, paclitaxel upregulates GBP2 expression, and paclitaxel-induced apoptotic activity was distinctively compromised by knockout of GBP2 in CML cells. Bioinformatics analyses of leukemia databases revealed that transcripts of GBPs were generally downregulated in leukemia patients and that GBPs were favorable prognosis markers. Thus, these findings provide molecular evidence of GBPs as apoptosis-inducing proteins of leukemia cells and suggest that GBPs are attractive targets for the development of chemotherapeutics.

9.
EMBO J ; 39(24): e104719, 2020 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-33215742

RESUMO

Recent evidence suggests that animal microRNAs (miRNAs) can target coding sequences (CDSs); however, the pathophysiological importance of such targeting remains unknown. Here, we show that a somatic heterozygous missense mutation (c.402C>G; p.C134W) in FOXL2, a feature shared by virtually all adult-type granulosa cell tumors (AGCTs), introduces a target site for miR-1236, which causes haploinsufficiency of the tumor-suppressor FOXL2. This miR-1236-mediated selective degradation of the variant FOXL2 mRNA is preferentially conducted by a distinct miRNA-loaded RNA-induced silencing complex (miRISC) directed by the Argonaute3 (AGO3) and DHX9 proteins. In both patients and a mouse model of AGCT, abundance of the inversely regulated variant FOXL2 with miR-1236 levels is highly correlated with malignant features of AGCT. Our study provides a molecular basis for understanding the conserved FOXL2 CDS mutation-mediated etiology of AGCT, revealing the existence of a previously unidentified mechanism of miRNA-targeting disease-associated mutations in the CDS by forming a non-canonical miRISC.


Assuntos
Proteína Forkhead Box L2/genética , Proteína Forkhead Box L2/metabolismo , Tumor de Células da Granulosa/genética , MicroRNAs/metabolismo , Mutação , Fases de Leitura Aberta , Desequilíbrio Alélico , Animais , Apoptose , Proteínas Argonautas/genética , Proteínas Argonautas/metabolismo , Morte Celular/fisiologia , RNA Helicases DEAD-box/genética , RNA Helicases DEAD-box/metabolismo , Regulação Neoplásica da Expressão Gênica , Técnicas de Inativação de Genes , Tumor de Células da Granulosa/patologia , Células HEK293 , Humanos , Camundongos , Camundongos Knockout , MicroRNAs/genética , Mutação de Sentido Incorreto , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , RNA Mensageiro/metabolismo , Transcriptoma
10.
Nat Commun ; 11(1): 2010, 2020 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-32332759

RESUMO

The balance between major DNA double-strand break (DSB) repair pathways is influenced by binding of the Ku complex, a XRCC5/6 heterodimer, to DSB ends, initiating non-homologous end joining (NHEJ) but preventing additional DSB end resection and homologous recombination (HR). However, the key molecular cue for Ku recruitment to DSB sites is unknown. Here, we report that FOXL2, a forkhead family transcriptional factor, directs DSB repair pathway choice by acetylation-dependent binding to Ku. Upon DSB induction, SIRT1 translocates to the nucleus and deacetylates FOXL2 at lysine 124, leading to liberation of XRCC5 and XRCC6 from FOXL2 and formation of the Ku complex. FOXL2 ablation enhances Ku recruitment to DSB sites, imbalances DSB repair kinetics by accelerating NHEJ and inhibiting HR, and thus leads to catastrophic genomic events. Our study unveils the SIRT1-(de)acetylated FOXL2-Ku axis that governs the balance of DSB repair pathways to maintain genome integrity.


Assuntos
Quebras de DNA de Cadeia Dupla , Reparo do DNA por Junção de Extremidades , Proteína Forkhead Box L2/metabolismo , Autoantígeno Ku/metabolismo , Acetilação , Linhagem Celular Tumoral , Proteína Forkhead Box L2/genética , Células HEK293 , Recombinação Homóloga , Humanos , Autoantígeno Ku/genética , Mutação , Ligação Proteica/genética , RNA Interferente Pequeno/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Sirtuína 1/metabolismo
11.
J Am Chem Soc ; 142(20): 9231-9239, 2020 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-32302126

RESUMO

Fluorescence-based amine-reactive dyes are highly valuable for the sensing of amines and the labeling of biomolecules. Although it would be highly desirable, large changes in emission spectra and intensity seldom accompany the conjugation of known amine-reactive dyes to their target molecules. On the contrary, amide bond formation between amines and the pentafluorophenyl (2-PFP) and succinimidyl (2-NHS) esters of meso-carboxyBODIPY results in significant changes in emission maxima (Δλ: 70-100 nm) and intensity (up to 3000-fold), enabling the fast (down to 5 min) and selective fluorogenic detection and labeling of amines, amino acids, and proteins. This approach further benefits from the demonstrated versatility and high reliability of activated ester chemistry, and background hydrolysis is negligible. The large "turn-on" response is a testament of the extreme sensitivity of meso-carboxyBODIPYs to the minimal changes in electronic properties that distinguish esters from amides. Applications to the detection of food spoilage, staining of proteins on electrophoretic gels or in living cells, and the expedited synthesis of organelle-specific fluorescence microscope imaging agents are further demonstrated.


Assuntos
Aminas/análise , Compostos de Boro/química , Ésteres/química , Corantes Fluorescentes/química , Proteínas/análise , Aminoácidos , Animais , Compostos de Boro/síntese química , Linhagem Celular Tumoral , Ésteres/síntese química , Peixes , Corantes Fluorescentes/síntese química , Humanos , Estrutura Molecular , Imagem Óptica
12.
Biochem Biophys Res Commun ; 518(2): 368-373, 2019 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-31427081

RESUMO

The adaptor-related protein complex 5 subunit mu 1 (AP5M1) is an evolutionally conserved protein with ubiquitous expression in human tissues. However, the major function of AP5M1 in living organisms is unclear owing to few published studies. Here, we demonstrate that AP5M1 is a potent apoptosis-inducing molecule in cervical cancer cells. We also found that AP5M1 upregulated the level of BAX protein, a key pro-apoptotic B cell lymphoma (BCL)-2 family member regulating mitochondrial apoptotic cell death pathway. Moreover, AP5M1 completely lost its apoptotic activity in BAX-knockout or -knockdown cells, indicative of its functional dependence on BAX. Comparative analysis of cervical tissues from patients with cervical carcinoma and non-cancer control revealed a prominent downregulation in AP5M1 expression with a concomitant downregulation in BAX expression; AP5M1 and BAX mRNA expression levels in cervical tissues exhibited a strong positive correlation (r = 0.97). Thus, we identified AP5M1 as a previously unrecognized apoptotic protein that governs BAX expression and revealed the association between AP5M1 and malignancy.


Assuntos
Proteínas Reguladoras de Apoptose/metabolismo , Apoptose , Neoplasias do Colo do Útero/metabolismo , Proteína X Associada a bcl-2/metabolismo , Proliferação de Células , Feminino , Células HeLa , Humanos , Células Tumorais Cultivadas , Neoplasias do Colo do Útero/patologia
13.
Sci Rep ; 9(1): 3140, 2019 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-30816283

RESUMO

Melanoma is the most aggressive form of skin cancer, with metastatic melanoma being refractory to currently available conventional therapies. In this study, we evaluated the inhibitory effect of coronatine (COR) on the proliferation of metastatic melanoma cells. COR inhibited the proliferation of melanoma cells but negligibly affected the proliferation of normal melanocytes. Comparative metabolic and lipidomic profiling using gas chromatography-mass spectrometry and direct infusion-mass spectrometry was performed to investigate COR-induced metabolic changes. These analyses identified 33 metabolites and 82 lipids. Of these, the levels of lactic acid and glutamic acid, which are involved in energy metabolism, significantly decreased in COR-treated melanoma cells. Lipidomic profiling indicated that ceramide levels increased in COR-treated melanoma cells, suggesting that ceramides could function as a suppressor of cancer cell proliferation. In contrast, the levels of phosphatidylinositol (PI) species, including PI 16:0/18:0, 16:0/18:1, 18:0/18:0, and 18:0/18:1, which were found to be potential biomarkers of melanoma metastasis in our previous study, were lower in the COR-treated cells than in control cells. The findings of metabolomic and lipidomic profiling performed in the present study provide new insights on the anticancer mechanisms of COR and can be used to apply COR in cancer treatment.


Assuntos
Aminoácidos/farmacologia , Antineoplásicos/farmacologia , Indenos/farmacologia , Melanoma/tratamento farmacológico , Neoplasias Cutâneas/tratamento farmacológico , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Ceramidas/metabolismo , Humanos , Metabolismo dos Lipídeos/efeitos dos fármacos , Lipidômica , Melanoma/metabolismo , Metaboloma/efeitos dos fármacos , Neoplasias Cutâneas/metabolismo
14.
Oncogenesis ; 7(1): 3, 2018 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-29358688

RESUMO

Although endometrial cancer is the most common type of gynecological malignancy in developed countries, its molecular etiology is not well understood. Leucine-rich repeat and immunoglobulin-like domain 2 (LRIG2) is an evolutionarily conserved gene, but its functions in the endometrium are unknown. In this study, we found that LRIG2 is highly downregulated in endometrial adenocarcinoma patients and that it functions as a tumor suppressor. LRIG2 induced the mitochondrion-mediated apoptotic pathways by regulating stoichiometric balance among BCL-2 family proteins, whereby pro-survival members, MCL-1 and BCL-xL, were downregulated and pro-apoptotic BAK and BAX were upregulated. LRIG2 also inhibited proliferation of the Hec-1A and Ishikawa endometrial adenocarcinoma cells by upregulating p21. LRIG2 induced BAX- and BAK-dependent cell death that was efficiently prevented by MCL-1 overexpression. Furthermore, we found that LRIG2 unexpectedly phosphor-activates phosphoinositide 3-kinase (PI3K)/AKT and epidermal growth factor receptor (EGFR), which are conventionally accepted as survival signaling cues in diverse types of cancer. We observed that PI3K/AKT and EGFR serve as key kinases that have roles as growth suppressors of Hec-1A endometrial cancer cells by mediating the LRIG2-induced modulation of the BCL-2 family of proteins and p21. In vivo delivery of antisense DNAs against LRIG2 promoted the Hec-1A endometrial tumor growth in a xenograft mouse model, and immunoblotting of these tumor extracts showed consistent modulation of AKT, EGFR, the BCL-2 family members, and p21. Thus, our results demonstrated that LRIG2 is a growth suppressor of endometrial adenocarcinoma cells.

15.
ACS Appl Mater Interfaces ; 10(4): 3380-3391, 2018 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-29302967

RESUMO

The development of specifically targeted nanoparticles for subcellular organelles modified with a low-molecular-weight organic compound as drug nanocarriers can bring about wide applications in cancer therapy. However, their utility has been hampered by low selectivity, poor biodistribution, and limited efficiency. Herein, we report the aggregation behavior of a triphenylphosphonium-appended coumarin probe (TPP-C) in an aqueous solution and its applications as a mitochondria-targeting probe, and drug delivery carrier, which is a rare example for a low molecular-weight organic compound. The TPP-C formed homogeneous nanoparticles with small diameters in water as well as in mixtures of organic solvents and water. In pure water, the homogeneous nanoparticles induced J-aggregation, whereas in mixed solvents, the homogeneous nanoparticles induced H-aggregation. The luminescence intensities of nanoparticles originated from the aggregation-induced emission (AIE) effect in pure water and also in mixtures of organic solvents and water. These findings indicate that the AIE effect of TPP-C was dependent on the solvent. More interestingly, the TPP-C nanoparticles selectively accumulated in mitochondria. The TPP-C nanoparticles alone exhibited noncytotoxicity toward cancer cells. However, with the encapsulation of the anticancer drug doxorubicin (DOX) into the TPP-C nanoparticles, the DOX was efficiently delivered to the mitochondria. These results indicated that the proposed system demonstrates promise as a platform for future clinical medication, particularly for specific suborganelle-targeted drug delivery systems for cancer therapy.


Assuntos
Nanopartículas , Cumarínicos , Doxorrubicina , Portadores de Fármacos , Sistemas de Liberação de Medicamentos , Mitocôndrias , Distribuição Tecidual
16.
J Mater Chem B ; 6(36): 5698-5707, 2018 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-32254976

RESUMO

We report on the design and fabrication of a Fe3O4 core-mesoporous silica nanoparticle shell (Fe3O4@MSNs)-based mitochondria-targeting drug nanocarrier. A guanidinium derivative (GA) was conjugated onto the Fe3O4@MSNs as the mitochondria-targeting ligand. The fabrication of the Fe3O4@MSNs and their functionalization with GA were carried out by the sol-gel polymerization of alkoxysilane groups. Doxorubicin (DOX), an anti-cancer drug, was loaded into the pores of a GA-attached Fe3O4@MSNs due to both its anti-cancer properties and to allow for the fluorescent visualization of the nanocarriers. The selective and efficient mitochondria-targeting ability of a DOX-loaded GA-Fe3O4@MSNs (DOX/GA-Fe3O4@MSNs) was demonstrated by a co-localization study, transmission electron microscopy, and a fluorometric analysis on isolated mitochondria. It was found that the DOX/GA-Fe3O4@MSNs selectively accumulated into mitochondria within only five minutes; to the best of our knowledge, this is the shortest accumulation time reported for mitochondria targeting systems. Moreover, 2.6 times higher amount of DOX was accumulated in mitochondria by DOX/GA-Fe3O4@MSNs than by DOX/TPP-Fe3O4@MSNs. A cell viability assay indicated that the DOX/GA-Fe3O4@MSNs have high cytotoxicity to cancer cells, whereas the GA-Fe3O4@MSNs without DOX are non-cytotoxic; this indicates that the DOX/GA-Fe3O4@MSNs have great potential for use as biocompatible and effective mitochondria-targeting nanocarriers for cancer therapy.

17.
Anal Chem ; 89(19): 10565-10569, 2017 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-28871779

RESUMO

A fluorescent probe based on an excimer-forming benzothiazolyl-cyanovinylene (CV) dye was developed to target the apoptotic protease caspase-3. Upon the action of caspase-3, the water-soluble fluorescent probe Ac-DEVD-NH-CV, which is weakly green emissive in aqueous solution, is converted to hydrophobic CV-NH2, which spontaneously aggregates. Aggregation of CV-NH2 promotes excimer emission of the CV dye, which allows for the study of caspase-3 activity in vitro and for imaging the activity of the enzyme in living cells because of the large red shift and enhanced fluorescence signal of the probe.


Assuntos
Caspase 3/metabolismo , Corantes Fluorescentes/química , Sequência de Aminoácidos , Benzotiazóis , Caspase 3/química , Células HeLa , Humanos , Interações Hidrofóbicas e Hidrofílicas , Microscopia Confocal , Proteólise , Espectrometria de Fluorescência , Água/química
18.
Sci Rep ; 7(1): 8864, 2017 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-28821754

RESUMO

Malignant melanoma, characterized by its ability to metastasize to other organs, is responsible for 90% of skin cancer mortality. To investigate alterations in the cellular metabolome and lipidome related to melanoma metastasis, gas chromatography-mass spectrometry (GC-MS) and direct infusion-mass spectrometry (DI-MS)-based metabolic and lipidomic profiling were performed on extracts of normal human melanocyte (HEMn-LP), low metastatic melanoma (A375, G361), and highly metastatic melanoma (A2058, SK-MEL-28) cell lines. In this study, metabolomic analysis identified aminomalonic acid as a novel potential biomarker to discriminate between different stages of melanoma metastasis. Uptake and release of major metabolites as hallmarks of cancer were also measured between high and low metastatic melanoma cells. Lipid analysis showed a progressive increase in phosphatidylinositol (PI) species with saturated and monounsaturated fatty acyl chains, including 16:0/18:0, 16:0/18:1, 18:0/18:0, and 18:0/18:1, with increasing metastatic potential of melanoma cells, defining these lipids as possible biomarkers. In addition, a partial-least-squares projection to latent structure regression (PLSR) model for the prediction of metastatic properties of melanoma was established, and central metabolic and lipidomic pathways involved in the increased motility and metastatic potential of melanoma cells were identified as therapeutic targets. These results could be used to diagnose and control of melanoma metastasis.


Assuntos
Metabolismo dos Lipídeos , Lipídeos/sangue , Melanoma/metabolismo , Melanoma/patologia , Metaboloma , Metabolômica , Biomarcadores , Biologia Computacional/métodos , Cromatografia Gasosa-Espectrometria de Massas , Humanos , Melanócitos/metabolismo , Redes e Vias Metabólicas , Metabolômica/métodos , Metástase Neoplásica , Estadiamento de Neoplasias
19.
Biochem Biophys Res Commun ; 482(4): 877-882, 2017 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-27890615

RESUMO

Pituitary gonadotropins are key hormones that orchestrate the growth and development of ovarian follicles. However, limited information is available on intra-ovarian factors that mediate the actions of gonadotropins. In this study, we identified that the early growth response 2 gene (EGR2) is a gonadotropin-inducible gene in granulosa cells of rats and humans. Analysis of consensus EGR-binding elements (EBEs) showed that the immediate early response 3 gene (IER3) is a novel transcriptional target gene of EGR2 as confirmed by the luciferase assay, electrophoretic mobility-shift assay (EMSA), chromatin immunoprecipitation (ChIP), and western blot analysis. Overexpression of EGR2 promoted survival of KGN human granulosa-derived cells in which IER3 acts as a mediator; knockdown of EGR2 induced death in KGN cells. Additionally, EGR2 was found to regulate the expression of myeloid cell leukemia 1 (MCL-1), which belongs to the BCL-2 family of proteins regulating cell survival. Thus, this study identified a novel signaling axis, comprised of gonadotropins-EGR2-IER3, which is important for the survival of granulosa cells during folliculogenesis.


Assuntos
Proteínas Reguladoras de Apoptose/genética , Proteína 2 de Resposta de Crescimento Precoce/genética , Gonadotropinas/metabolismo , Células da Granulosa/metabolismo , Proteínas de Membrana/genética , Ativação Transcricional , Animais , Sequência de Bases , Linhagem Celular , Sobrevivência Celular , Proteína 2 de Resposta de Crescimento Precoce/metabolismo , Feminino , Células da Granulosa/citologia , Humanos , Regiões Promotoras Genéticas , RNA Mensageiro/genética , Ratos , Ratos Sprague-Dawley
20.
J Biomol Struct Dyn ; 35(2): 273-286, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26775655

RESUMO

Phosphotriesterase-like lactonases (PLLs) have received much attention because of their physical and chemical properties. They may have widespread applications in various fields. For example, they show potential for quorum-sensing signaling pathways and organophosphorus (OP) detoxification in agricultural science. However, the mechanism by which PLLs hydrolyze, which involves OP compounds and lactones and a variety of distinct catalytic efficiencies, has only rarely been explored. In the present study, molecular dynamics (MD) simulations were performed to characterize and contrast the structural dynamics of DrPLL, a member of the PLL superfamily in Deinococcus radiodurans, bound to two substrates, δ-nonanoic lactone and paraoxon. It has been observed that there is a 16-fold increase in the catalytic efficiency of the two mutant strains of DrPLL (F26G/C72I) vs. the wild-type enzyme toward the hydrolysis of paraoxon, but an explanation for this behavior is currently lacking. The analysis of the molecular trajectories of DrPLL bound to δ-nonanoic lactone indicated that lactone-induced conformational changes take place in loop 8, which is near the active site. Binding to paraoxon may lead to conformational displacement of loop 1 residues, which could lead to the deformation of the active site and so trigger the entry of the paraoxon into the active site. The efficiency of the F26G/C72I mutant was increased by decreasing the displacement of loop 1 residues and increasing the flexibility of loop 8 residues. These results provide a molecular-level explanation for the experimental behavior.


Assuntos
Lactonas/química , Simulação de Dinâmica Molecular , Paraoxon/química , Hidrolases de Triester Fosfórico/química , Sítios de Ligação , Ligação de Hidrogênio , Ligantes , Mutação , Hidrolases de Triester Fosfórico/genética , Ligação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...